sampleclean.activeml

SVMParameters

case class SVMParameters(numIterations: Int = 100, stepSize: Double = 1.0, regParam: Double = 1.0, miniBatchFraction: Double = 1.0) extends Product with Serializable

Parameters to train the SVMWithSGD model

numIterations

number of iterations of gradient descent to run.

stepSize

step size to be used for each iteration of gradient descent.

regParam

regularization parameter.

miniBatchFraction

fraction of data to be used per iteration.

See also

org.apache.spark.mllib.classification.SVMWithSGD

Linear Supertypes
Serializable, Serializable, Product, Equals, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. SVMParameters
  2. Serializable
  3. Serializable
  4. Product
  5. Equals
  6. AnyRef
  7. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new SVMParameters(numIterations: Int = 100, stepSize: Double = 1.0, regParam: Double = 1.0, miniBatchFraction: Double = 1.0)

    numIterations

    number of iterations of gradient descent to run.

    stepSize

    step size to be used for each iteration of gradient descent.

    regParam

    regularization parameter.

    miniBatchFraction

    fraction of data to be used per iteration.

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  10. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  11. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  12. val miniBatchFraction: Double

    fraction of data to be used per iteration.

  13. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  14. final def notify(): Unit

    Definition Classes
    AnyRef
  15. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  16. val numIterations: Int

    number of iterations of gradient descent to run.

  17. val regParam: Double

    regularization parameter.

  18. val stepSize: Double

    step size to be used for each iteration of gradient descent.

  19. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  20. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  21. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  22. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from Product

Inherited from Equals

Inherited from AnyRef

Inherited from Any

Ungrouped